Application of Derivatives NCERT Solutions
NCERT Exercise 6.5:Q:24-29
Question: (24)Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt 2 ` times the radius of the base.
Solution:
Let `r` and `h` be the radius of base and altitude respectively of a cone then
`V = 1/3 pir^2h = k`
`=> h=3K/(pi r^2)`
Let `S` denote the surface areaof cone then.
` S = pirl = pir sqrt(h^2+r^2)`
From (i)and (ii),we have
`S = pi r sqrt((9k^2)/(pi^2r^4)) +r^2 )`
`=(pir)/(pi r^2)sqrt(9h^2+pi^2r^6)`
`1/r sqrt (9k^2+pi^2 r^6)`
`(dS)/(dr)= (r.1/(2sqrt(9k^2+pi^2r^6)) xx(6pi^2r^5)- sqrt(9k^2+pi^2r^6)xx1)/r^2`
`(3pi^2r^6-9k^2-pi^2r^6)/(r^2sqrt(9k^2+pi^2r^6)`
`(2pi^2r^6-9k^2)/(r^2sqrt(9k^2+pi^2r^6))`
For maxima or minima.`(dS)/(dr)=0`
`:. (2pi^2r^6-9k^2)/(r^2sqrt(9k^2+pi^2r^6))=0`
`=> 2pi^2r^6-9k^2=0`
`9k^2 = 2pi^2 r^6`
`=> k^2 = 2/9 pi^2r^6`
and `r^6=(9k^2/2pi^2)`
`r= [(9k^2)/(2pi^2)]^(1/6)`
At `r= [(9k^2)/(2pi^2)]^(1/6)`
When `r < r= [(9k^2)/(2pi^2)]^(1/6)`
then `(dS)/(dr)` is `- Ve`
When `r > [(9k^2)/(2pi^2)]^(1/6)`
then `(dS)/(dr)` is `+ Ve`
`r =[(9k^2)/(2pi^2)]^(1/6)` is a point of minima
now from (i) ` k=(pir^2h)/3`
` k^2 = (pi^2r^4h^2)/9 `
`:. (2pi^2 r^6)/9`
`=(pi^2r^4h^2)/9`
`[because; k^2=(2pi^2r^6)/9]`
`:. h^2=2pi^2 => h= sqrt 2r`.
Question: (25)Show that the semi - vertical angle of the cone of the maximum volume and of given slant height is `tan^-1 sqrt2` .
Solution:
Let theta be the semi- vertical angle of the cone of height `h`and slant height `l`
Then `CD= l cos theta` and `BD=lsin theta`
Let `V` denote the volume of cone then
`V = 1/3 pi . BD^2.CD`
` =1/3 pi (lsin theta)^2. (l cos theta)`
`= pi/3 (l^3sin ^2 theta cos theta)`
`:. (dV)/(d theta)= (pi l^3 )/3 [sin^2 theta (-sin theta) + ` `cos theta(2sin theta cos theta)]`
`=(pil^3)/3 [-sin^3 theta + 2 sin theta cos ^2 theta]`
`= (pi l^3)/3 sin theta [2 cos^2 theta-sin^2 theta ]`
`(d^2V)/(d theta ^2)= (pi l^3)/3[-3sin^2theta cos theta + 2[sin theta. 2 cos theta (-sin theta )+cos^2 theta .cos theta)]`
` (pi l^3)/3[-3sin^2theta cos theta - 4 sin^2 thea cos theta + 2 cos^3 theta]`
` = (pi l^3)/3[-7sin^2theta cos theta +2 cos ^3theta] `
`= (pi l^3)/3 cos ^3 theta [ 2-7 tan^2theta]`
For maxima or minima, `(dV)/(d theta)=theta`
`:. (pi l^3)/3 sin theta (2 cos^2 theta - sin^2 theta)=0`
`=> sin theta (2 cos^2 theta - sin^2 theta) =0`
` => 2 cos^2 theta - sin^2 theta =0`
` => sin theta ( 2 cos^2 theta - sin^2 theta)=0`
`=> 2 cos ^2 theta - sin ^2 theta =0`
`=> 2 cos^2 theta = sin ^2 theta `
`=> tan^2 theta = 2 => tan theta = sqrt 2`
Now ` cos theta = 1/(sec theta)`
`= 1/ (sqrt(1+tan^2 theta))`
`=1/(sqrt(1+2)`
`=1/(sqrt3)`
At ` theta = tan ^-1 sqrt 2`
`(d^V)/(d theta^2)`
`=(pi l ^3)/3 (1/sqrt 3)^2 (2- 7 xx 2)`
` (pi l^3)/(9sqrt3) xx -12`
` = - 4/(3 sqrt 3) pi l ^3 < 0`
Thus volume is maximum when semi- vertical angle of cone is `tan^-1 sqrt 2`
Question: (26)-Show that semi- vertical angle of right circular cone of given surface area and maximum volume is `sin^-1 (1/3)`
p>Solution:Let `r` be the radious of base, `h` be the height and `l` be the slant height of cone.
Fig Page-no 513Then `S= pirl + pir^2 =K`
`=>l = (K-pir^2)/(pir)`----(i)
and `l= sqrt(h^2 + r^2)`
Let `V` denote the volume of cone then
`V=1/3 pir^2 h`
`V =1/3 pi r^2 sqrt (l^2 -r^2) `
`= 1/3 pir^2 sqrt((K-pi r^2)/(pir)-r^2`
`:. v^2 = (pi^2 r^4)/9[((K-pir^2)^2-pi^2r^4)/(pi^2r^2)]`
`(pi^2 r^4)/9[(K^2 + pi^2r^4-2piKr^2-pi^2r^4)/(pi^2r^2)]`
`(pi^2 r^4)/9[(K^2-2pi Kr^2)/(pi^2r^2)]`
`= (pi^2 r^4)/9 xx K/(pi^2r^2)(K-2pir^2)`
` V^2 = (Kr^2)/9(K - 2pir^2)`
` K/9 [Kr^2- 2pir^4]`
`(d(V^2))/(dr)`
` K/9[2Kr-8pir^3]`
`(d^2(v^2))/(dr^2)`
`K/9[2K-24pir^2]`
For maxima or minima, `(dV^2)/(dr)=0`
`:. K/9 [2Kr-8pir^3]`
`=> 2Kr-8pir^3=0`
`=> 8pir^3 = 2Kr`
`=> r^2 = K/(4pi)`
`=>r = sqrt(K/(4pi))`
At `r= sqrt(K/(4pi))`
`(d^2(V))/(dr^2) `
`=K/9 [2K-24pi xx K/(4pi)]`
` =K/9[2K- 6K]`
` =-(4k^2)/9<0`
`:. r = sqrt K/(4pi) ` is a point of maxima.
Now ` pirl + pir^2 = K `
`=> pirl + pir^2 = 4pir^2`
`=> `pirl = 3 pir^2`
Also `sin theta = r/l = r/(3r) = 1/3`
`=> theta = sin ^-1 (1/3)`
Thus volume is maximum when semi- vertical angle is ` sin^-1 (1/3)`
Choose the correct answr in the Exercises `27` to `29`.
Question: (27) The point on the curve `x^2 = 2y` which is nearest to the point `(0,5)` is
Question: (A) `(2sqrt2.4)`
Question: (B)`(2sqrt 2 .0)`
Question: (C)`(0,0)`
Question: (D) `(2,2)`
p>Solution:Let `A (x,y) ` be any point on the given curve and `B(0,5) ` be given point then
`S = AB^2 = (x-0)^2+ (y-5)^2`
` = x^2+ y^2 + 25 - 10y`
`=2y+y^2+25-10y`
` =y^2-8y+ 25`
`:. (ds)/(dy)=2y-8`
`(d^2s)/(dy^2) =2`
For maxima or minima , `(ds)/(dy)=0`
`:. 2y-8=0 `
`=>y = 4`
At `y= 4`
`(d^2s)/(dy^2) =2 > 0 `
` y=4` is a point of minima.
now `x^2 = 2y => x^2`
`2 xx 4 => x`
` sqrt 8=2sqrt2`
Thus required point is `( 2sqrt2, 4)`
So answer is (A).
Question: (28)For all real values of x, the minimum value of `(1-x+x^2)/(1+x+x^2)` is
Question: (A) 0
Question: (B) 1
Question: (C) 3
Question: (D) `1/3`
p>Solution:Let `y= (1-x+x^2)/(1+x+x^2)`
`(dy)/(dx) =((1+x+x^2)(2x-1)-(1-x+x^2)(2x+1))/(1+x+ x^2)^2`
`=(2x+2x^2+2x^3-1-x-x^2-(2x-2x^2+2x^3+1 -x+x^2))/((1+x+x^2)^2)`
` =(2x+2x^2+2x^3-1-x-x^2-2x+2x^2-2x^3-1+ x-x^2)/(1+x+x^2)^2`
`=(2x^2-2)/(1+x+x^2)^2`
`=(2(x+1)(x-1))/(1+x+x^2)^2`
`(d^2y)/(dx^2) = ((1+x+x^2)^2(4x)-(2x^2-2).2(1+x+x^2).(2x+1))/(1+x+x^2)^4`
`=((1+x+x^2)[4x + 4x^2 + 4x^3 - 8x^3 -4x^2 + 8x +4])/(1+x+x^2)^4`
`=(-8x^3+12x+4)/(1+x+x^2)^3 `
`= -4(2x^3 - 3x -1)/(1+x+x^2)^3`
for maxima or minima, `(dy)/(dx)=0`
`:. (2(x+1)(x-1)/(1+x+x^2)^2 = 0`
`=> 2(x+1)(x-1)=0`
`=>x=1 or x=1`
At ` x=-1`
`(d^2y)/(dx^2)`
`(-4[2(-1)^3-3 xx -1 -1])/([1-1+(-1)^2]^3)`
` (-4[-2+3-1])/1 = 0`
`:. x=-1` is a point of inflecxion
At `x=1`
`(d^2y)/(dx^2) `
`=(-4[2(1)^3- xx -1-1])/[1+1+(1)^2]^3`
` =(-4[2-3-1])/27`
`= (-4 xx-2)/27 = 8/27`
`:.x =1 ` is a point of minima
`:.` Minimum value `=(1-1+(1)^2)/(1+1+(1)^2)= 1/3`
Thus answer is (D),
Question: (29)The maximum value of ` [x(x-1)+1]^(1/3) , 0 <- x <- 1` is
Question: (A)`(1/3)^(1/3)`
Question: (B)` 1/2`
Question: (C)1
Question: (D)0
p>Solution:Let ` y= [x(x-1) + 1 ]1/3`
`(dy)/(dx) = 1/3 [x(x-1)+ 1] ^-(2/3).(2x-1)`
`= (2x-1)/(3[x (x-1)+ 1]^(2/3))`
`(d^2y)/(dx^2)= (3[x(x-1)+1]^(2/3)(2) - (2x-1)3 xx 2/3 [x(x-1)+1]^(1/3)(2x-1))/(9[x(x-1)+1)^(4/3))`
` =(6[x(x-1)+1]-2(2x-1)^2)/(9[x(x-1)+1)^(5/3))`
`=(6x^2-6x+6-2(4x^2+1-4x))/(9[x(x-1)+1)^(5/3))`
`=(6x^2 -6x + 6- 2 (4x^2+1-4x))/(9[x(x-1)+1)^(5/3))`
`=(6x^2-6x+ 6 - 8x^2 - 2 + 8x)/(9[x(x-1)+1)^(5/3))`
`(-2x^2+ 2x +4)/(9[x(x-1)+1)^(5/3))`
`(-2(x^2-x-2))/(9[x(x-1)+1)^(5/3))`
For maxima or minima, `(dy)/(dx)=0`
`:.(2x-1)/(3[x(x-1)+1])^(2/3)= 0`
`=>2x-1 = 0`
`=> x = 1/2`
At `x=1/2`
`(d^y)/(dx)^2`
` = (-2[(1/2)^2- 1/2 -2])/(9[1/2(1/2-1)+1]^(5/3))`
`= (-2[1/4 -1/2 -2])/(9[1/4+1]^(5/3)`
`(-2[- 9/4])/(9(5/4))^(5/3)`
`= (9/2)/(9(5/4)^(5/3))>0`
`:. x= 1/2` is a point of minima.
At `x=0`
`y= [0(0-1)+1](1/3)`
`=(1)^(1/3) =1`
At `x=1
`y= [1(1-1)+ 1]^(1/3)`
`= (1)^(1/3)=1`
Thus maximum value of `y` is 1
So correct answer s (C).
Reference: