Continuity & Differentiability NCERT Solutions
Miscellaneous Ex Q12-23
Question: (12) Find dydx if y=12(1cost),x=10(t-sint),-π2<t<π2
Solution:
Here x=10(t-sint) and y=12(1-cost)
Differentiating both sides w.r.t. x , we have
dxdt=ddt[10(t-sint)] and dydt=ddt
=ddt[12(1-cost)]
=10(1-cost)
=12sint
Now dydx=dy/dtdx/dt
12sint10(1-cost)
12×2sin
= 6/5 cot \ t/2
Question: (13)Find (dy)/(dx), if y= sin^-1 x + sin ^-1 sqrt (1-x^2), -1<= x<= 1
Solution:
Here y = sin^-1 x + sin ^-1 sqrt (1-x^2)
= sin^-1[xsqrt (1-(1-x^2))+ sqrt(1-x^2). sqrt(1-x^2)]
= sin^-1[x sqrt(1-((1-x^2) + sqrt (1-x^2) . sqrt (1-x^2)]
[∵ sin^-1 x+ sin ^-1 y= sin^-1 (xsqrt(1-y^2) +ysqrt (1-x^2))]
=sin^-1[x^2+1- x^2]=sin^-1(1) = pi/2
y= pi/2
Differentiating both sides w.r.t. x , we have
(dy)/(dx)= d/(dx)(pi/2) = 0
Question: (14) If x sqrt(1+y)+ ysqrt(1+x) = 0, for-1< x < 1, prove that
Solution:
Here xsqrt (1+y) + y sqrt (1+x)=0
x sqrt(1+y) = - y sqrt(1+x)
squaring both sides, we have
x^2 (1+y)
= y^2 (1+x)
=>x^2+ x^2y
= xy(y-x)
=>x+y =-xy
=> y+xy=-x
=> y= -x/(1+x)
Differentiating both sides w.r.t. x , we have
(dy)/(dx)= d/(dx)[-x/(1+x)]
((1+x)d/dx (-x)-(-x)d/dx(1+x))/((1+x)^2)
(-1-x+x)/(1+x^2)= -1/((1+x)^2)
Question: (15) If (x-a)^2 + (y-b)^2 = c^2, for some c > 0, prove that
[1+(dy/dx)^2]^(3/2)/((d^2y)/(dx^2) is a constant independent of a and b
Solution:
Here (x-a)^2 +(y-b)^2 =c^2
Differentiating both sides w.r.t. x , we have
d/dx [(x-a)^2]+(y-b)^2]
=d/dx(c^2)
2(x-a)d/dx(x-a) +2(y-b).d/dx(y-b)=0
2(x-a)+ 2(y-b)(dy)/(dx)=0
(x-a)+ (y-b)(dy)/(dx)=0
Again differentiating both sides w.r.t x , we have
d/dx [(x-a)+ (y- b)(dy)/(dx)]=d/dx(0)
1+(y-b).d/dx(dy/dx) + dy/dx.d/dx(y-b)=0
1+(y-b).(d^2y)/(dx^2)+ (dy/dx)^2 =0
(y-b)(d^2y)/(dx^2)= -(1+ (dy/dx)^2)
(y-b)=-[(1+(dy/dx)^2)/((d^2y)/(dx^2))] ----(iii)
Putting value of (y-b) in (ii), we have
(x-a)-[(1+(dy/dx)^2)/((d^2y)/(dx^2))](dy)/(dx)=0
(x-a)=[(1+(dy/dx)^2)/((d^2y)/(dx^2))](dy)/(dx)
Putting value of (x-a)and (y-b) in (i), we get
[(1+(dy/dx)^2)/((d^2y)/(dx^2))](dy/dx)^2 +[(1+(dy/dx)^2)/((d^2y)/(dx^2))]=c^2
[(1+(dy/dx)^2)]^2 [1+(dy/dx)^2]=c^2((d^2y)/(dx^2))^2
[1+(dy/dx)^2]^3 = c^2(d^2y/dx^2)^2
Taking square root on both sides, we have
[(1+(dy/dx)^2)]^(3/2) =c((d^2y)/(dx^2))
c= ([1+(dy/dx)^2]^(3/2))/((d^2y)/(dx^2))
Question: (16) If cos y = xcos(a+y) with cos a!= +-1 , prove that (dy)/(dx) =cos^2 \ ((a+y))/(sin a)
Solution:
Here cos y=x cos(a+y)
:. x= (cos y)/(cos (a+y))
Differentiating both sides w.r.t. x , we have
dx/dy =d/dy[(cos y)/(cos(a+y))]
=(cos (a+y)d/dy (cos y)- cos y d/dy (cos(a+y)))/(cos^2(a+y)
=-(cos(a+y)sin y+cosy sin(a+y))/(cos^2(a+y))
= (sin[a+y-y])/(cos^2(a+y))
= (sin a)/(cos^2(a+y)
:. dy/dx = (cos^2(a+y))/(sin a)
Question: (17) If x = a(cos t+ t sin t) and y=a(sin t-t cos t), find (d^2y)/(dx^2)
Solution:
Here x= a (cos t + t) and y = a (sin t - t cos t)
Differentiating both sides w.r.t. x , we have
dx/dy =d/dt[a(cos t + t sin t)]
a[-sin t + t d/dt(sin t)+ sin td/dt (t)]
a[ -sin t+ t cos t + sin t]= at cos t
dy/dt = d/dt [a (sin t- t cos t)]
a[cos t-{t \ d/dt(cost t)+ cos t\ d/dt(t)}]
a[ cos t + tsin t - cos t] = at sin t
Now, dy/dx =(dy/dt)/(dx/dt)
(at sin t)/(at cos t)=tan t
Differentiating both sides w.r.t. x , we have
d/dx(dy/dt)=d/dx (tan t)
(d^2y)/(dx^2)=sec^2t (dt)/(dx)
sec^2 t. 1/ (at cost)
= 1/at sec^3 t.
Question: (18) If f(x)= |x|^3, show that t f'(x) exists for all real x and find it.
Solution:
Here f(x)=|x|^3
When x>= 0
f(x)=|x|^3= x^3
Differentiating both sides w.r.t. x , we have
d/dx[f(x)]=d/dx (x^3)
Again differentiating both sides w.r.t. x , we have
d/dx [f(x)]= d/dx (3x^2)
f(x) =6x
When x<0
f|x| = |x|^3
= (-x)^3=-x^3
Differentiating both sides w.r.t. x , we have
v]d/dx [f(x)]= d/dx(-x^3)
f(x) =-3x^2
Again differentiating both sides w.r.t. x , we have
d/dx [f(x)]= d/dx(-3x^2)
f'(x) =6x
Question: (19) Using mathematical induction prove thatd/dx(x^n)=nx^n-1 for all positive integers n.
Solution:
Here P(n): d/dx(x^n)=nx^(n-1)
For n=1
p(1): d/dx(x^1)= 1x^1 -1
which is true.
Suppose it is trus for n=k
P(k):d/dx(x^k)=kx^(k-1) is true.
Let n=k+1
P(k+1): d/dx(x^(k+1))
=(k+1)^(k+1-1)
=(k+1)x^k
d/dx(x^(k+1))
= d/dx (x^k.x)
=x^k. d/dx (x) +x.d/dx(x^k)
= x^k. 1+ x. kx^(k-1)
x^k+kx^k
=(k+1)x^(k+1)
So it is true for n=k+1, whenever it is true for n=k
Thus by principal of mathematical induction it is true for all values of k.
Question: (20) Using the fact that sin(A+B)=sin A cos B+cos A sin Band the differentation , obtain the sum formula for cosine.
Solution:
Here sin (A+B)= sin A cos B+ cos A sin B
Let A and B be functions of t, then differetiating both sides w.r.t. t we have
d/dt[sin(A+B)]
=d/dt[ sin A cos B + cos A sin B]
cos (A+B)[(dA)/(dt)+ (dB)/(dt)]
sin A d/dt cos B + cos B d/dt sin A + cos A d/dt sin B + sin B d/dt cos A
=- sin A cos B . (dB)/dt + cos A cos B (dA)/dt + cos A cos B (dB)/ dt -sin A sin B (dA)/dt
cos (A+B)[(dA)/dt + (dB)/dt]
cos A cos B [(dA)/dt +(dB)/dt]- sin A sin B [(dA)/dt +(dB)/dt]
(cos A cos B - sin A sin B)[(dA)/dt+ (dB)/dt]
:. cos (A+B)=cos A cos B -sin A sin B
Question: (21) Does there exist a function which is continuous everywhere but not differentiable at exactly two points? justify your answer.
Solution:
If we take f(x)=|x|+|x-1|
Then f(x) is continuous everywhere, but it is not differentiable atx=0 and x=1
Question: (22) If y=|(f(x), g(x), h(x)), (l, m, n), (a, b, c)|,prove that dy/dx= |(f'(x), g'(x), h'(x)), (l, m, n), (a, b, c)|
Solution:
Here y=|(f(x), g(x), h(x)), (l, m, n), (a, b, c)|
Differentiating both sides w.r.t. x we have
(dy)/dx =d/dx |(f'(x), g'(x), h'(x)), (l, m, n), (a, b, c)|
=|(f'(x), g'(x), h'(x)), (l, m, n), (a, b, c)| +|(f(x), g(x), h(x)), (0, 0, 0), (a, b, c)| +|(f(x), g(x), h(x)), (l, m, n), (0, 0, 0)|
=|(f(x), g(x), h(x)), (l, m, n), (a, b, c)|
Question: (23) If y= e^(a cos -1 x), -1<=x <= 1, show that (1=x^2)(d^2y)/(dx^2) -x dy/dx - a^2 y =0
Solution:
Here y= e^(a cos -1x)
Differentiating both sides w.r.t. x we have
(dy)/dx =d/dx (e^(a cos-1 x))
=e^(a cos-1 x). d/dx (a cos ^-1x)
e^(a cos-1 x). -a/sqrt(1-x^2)
:.sqrt (1-x^2 dy/dx
= -a e^(a cos-1 x)
Again differentiating both sides w.r.t. x we have
d/dx[sqrt(1-x^2).(dy)/dx]
=d/dx [-ae^a cos-1 x]
sqrt(1-x^2).d/dx (dy/dx)+ dy/dx. d/dx (sqrt(1-x^2))
=-a.e^(acos-1x). d/dx (a cos ^-1x)
sqrt(1-x^2)(d^2y)/(dx^2) + dy/dx .1/2 sqrt(1-x^2) . -2x
-a.e^(a cos-1x). -a/ sqrt(1-x^2)
sqrt (1-x^2)(d^2y)/(dx^2)- x/ sqrt (1-x^2) (dy)/dx
-a^2/(sqrt(1-x^2)) e^(acos-1x)
Multiplying both sides by sqrt(1-x^2) we get
(1-x^2)(d^2y)/(dx^2)-x (dy)/dx
=a^2y[:. y=e^(a cos -1x)]
(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx) -a^2y =0
Reference: